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Large deviations play a significant role in many branches of nonequilibrium statistical physics. They are
difficult to handle because their effects, though small, are not amenable to perturbation theory. Even the
Gaussian model, which is the usual initial step for most perturbation theories, fails to be a starting point while
discussing intermittency in fluid turbulence, where large deviations dominate. Our contention is: in the large
deviation theory, the central role is played by the distribution associated with the tossing of a coin and the
simple coin toss is the “Gaussian model” of problems where rare events play significant role. We illustrate this
by applying it to calculate the multifractal exponents of the order structure factors in fully developed
turbulence.
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Fully developed turbulence in fluid �1–13� is basically
multifractal—a term coined for the very first time in a paper
by Benzi et al. �14�. The multifractal formulation was docu-
mented in great detail by Parisi and Frisch �15� �also see
�16��. Among the precursors to the multifractal formulation
are the works by Kolmogorov �1�, Obukov �2�, and Man-
delbort �17�. It is widely accepted that the concept of multi-
fractality, technically speaking, stands on the shoulders of the
large deviation theory �18–20�. However, one should be
careful enough while using large deviation theory in turbu-
lence for deriving exponents of the velocity structure func-
tions because Frisch et al. �21� have shown that one must
make use of “refined” large deviation theorem �22� as had
already been anticipated by experimentalists �23� on the ba-
sis of a normalization requirement.

The scaling exponents of the structure functions of the
velocity field difference between two points in a turbulent
fluid are known to be related nonlinearly on the orders of the
structure functions. In the model of Kolmogorov and
Obukhov, the nonlinearity was for the first time, attributed to
large fluctuations in the velocity difference, which in turn
was supposed to be triggered by large fluctuations in the
dissipation rate coarse grained at the same scale. Since then,
a number of models have been proposed to understand the
essential features of this “intermittent” behavior. Among
these, there is the multifractal model referred to above,
which interprets the experimental results by assuming multi-
fractal nature for the probability distribution function of the
energy dissipation rate. This model does not make predic-
tions, rather interprets the exponents of the scaling laws
for the coarse grained dissipation field in terms of a singu-
larity spectrum, defined as the Legendre transform of the
exponents.

Within the paradigm of multifractal model of turbulence,
where one assumes that the velocity has a local scale invari-
ance, it is not quite hard to find phenomenological models
that can faithfully enough reproduce anomalous scaling ex-
ponents. However, what we have focused on in this paper is
quite different than what the usual research on multifractality
is all about. We emphasize that the rare events present in the
distribution of energy dissipation in real space, when
“mapped” appropriately on the phenomenon of large devia-
tions found in simple coin toss, are enough to yield anoma-
lous exponents. Quite interestingly, here one does not has to
fall back on any explicit model of energy cascade, e.g., ran-
dom multiplicative model �11�, etc.

In what follows in this paper shortly, we propose an ap-
proach that allows us to construct a simple �tunable� param-
eter dependent model that has the amazing potential of yield-
ing quantitative results. While constructing such a model, we
mainly rely on the observation that the concerned physical
process �here, turbulence� has certain relevant rare events
present in it. In the case of turbulence, our model’s success
can be interpreted as the reconfirmation that the phenomenon
of multifractality owes itself to the rare events present in the
distribution of energy dissipation. To be precise, to construct
our model for turbulence, we have assumed that square of
one-dimensional velocity gradient �scaled appropriately as
shown later in Eqs. �6�–�8�� minus the expected mean of the
energy dissipation rate is a bounded, independent and iden-
tically distributed random variable. On the face of the fact
that velocity field is random in a turbulent flow, this assump-
tion is not very artificial. We want to stress here that our
model does not stand against the multifractal model of tur-
bulence. Rather, our model supplements the multifractal
model and also, uses its results for benchmarking. Our
framework, on the top of it, has the advantage of being ap-
plicable to any other physical phenomenon where there is no
known multifractal �or any other� explanation of the results
due to the presence of rare events therein. Our methodology
may look like a “black-box,” but the point is that it is capable
of delivering genuine results that can be experimentally
verified.
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That this approach can be very helpful in the subjects
unrelated to turbulence, can be carefully illustrated by suc-
cessfully applying the idea on the problem of Jarzynski
equality �24,25� �to be reported elsewhere in details� to ob-
tain work moments that are seen to compare favorably with
the experimentally obtained moments �26�. Jarzynski equal-
ity is an exact form among many fluctuation theorems �27�
that form a very important part of nonequilibrium statistical
mechanics. One might recall that the rare events present in
the dissipated work enter Jarzynski equality. These rare
events correspond to the negative values of the dissipated
work which constitute a transient violation of the second law
of thermodynamics. Though Jarzynski equality and turbu-
lence are fundamentally different, our approach can be ap-
plied to both of them �and many other such phenomena�—
the only connecting element being the presence of rare
events. While the rare events shaping Jarzynski equality are
the transient violations of the second law of thermodynam-
ics, the rare events which will be considered in turbulence
has to do with the occasional large fluctuations in the energy
dissipation rate which normally would stay very close to the
mean value. The link between the two very different phe-
nomena is the occurrence of the rare events.

As mentioned earlier, the high Reynolds number turbu-
lence remains the prime age old problem dominated by rare
events, which still eludes a satisfactory theoretical under-
standing. Before we plunge into the problem of modeling
intermittency in a turbulent fluid, let us begin by briefly re-
viewing the large deviation theory in the context of a coin-
toss experiment. Suppose we have a biased coin, such that
for each toss the probability of obtaining “head” is “p.” If we
assign the value 1 to the outcome head �each outcome is
denoted by Xi where i=1,2 , . . . ,� and 0 to the outcome “tail,”
then the mean after N trials is

MN =
1

N
�
i=1

N

Xi. �1�

As N→�, it is expected that MN→p. The question is: for
large N, what is the probability that MN differs from p by at
least x �where x is any preassigned fraction less than unity�?
The meaning of large deviation is that however large N may
be this probability is nonzero and if the Xi’s are bounded,
independent, and identically distributed random variables,
then Cramers’ theorem asserts that the tail of the probability
distribution of Xi is given by

�P�MN � x� � e−NI�x� for x � p

P�MN � x� � e−NI�x� for x � p
� . �2�

To apply this result in different disciplines of statistical phys-
ics, we require P�MN�x� and it is Varadhan’s theorem that
ensures that the sequence MN itself satisfies a large deviation
principle, i.e., P�MN�x�	e−NI�x�. For the coin toss under
consideration, Chernoff’s formula gives the rate function I�x�
as follows:

I�x� = x ln
x

p
+ �1 − x�ln

1 − x

1 − p
, �3�

and this is the central result that we will use.
Turning to turbulence, in 1941 Kolmogorov �28� invoked

the concept of Richardson’s cascade �29� of eddies to pro-
pose a phenomenological model �K41� for three-dimensional
incompressible turbulence at high Reynolds number. Even
today, this is the cornerstone of our understanding of turbu-
lence. Understanding turbulence is understanding the small
scale behavior of the velocity structure function Sq�l�, where
Sq�l�
���v� . �l�/ �l���q, with �v� 
v��r�+ l��−v��r�� and “l” is a
distance which is short compared to macroscopic length
scales like the system size but is large compared to molecular
scale where viscous dissipation takes place. The angular
bracket denotes ensemble average �i.e., average over differ-
ent values of “r�”�. The observation is that Sq�l� has a scaling
behavior l�q where l is in the range indicated �so-called iner-
tial range�. Finding �q can be described as the holy grail of
turbulence. K41 gives �q=q /3—a result which is exact for
q=3 and very close to experimental findings for low value of
q. There is systematic departure from q /3 at relatively higher
values of q. This is the phenomenon of intermittency. Of
particular interest is the case q=6. Since ��v�3 / l is a measure
of the local energy transfer rate �same as energy input and
energy dissipation rate in K41 and thus a constant�, we ex-
pect �6=2. The deviation 2−�6 is thus a very sensitive quan-
tity and is often singled out for special treatment. The expo-
nent �=2−�6 is formally called the intermittency exponent
and the experimental measurements agree on a value 0.2 for
�. It can be viewed as the co-dimension of dissipative struc-
tures.

The model of intermittency is usually constructed on a
phenomenological basis by thinking of various ways of
modifying the Richardson’s cascade picture. The � model,
the bifractal model, and the multifractal model all belong to
this class. The crucial hypothesis is that the daughter eddies
produced from the mother eddies are not space filling and the
active part of space is in general a multifractal. The velocity
field has different scaling exponents on different fractal sets
that form the multifractal structure. These scaling exponents
can, in principle, yield �q. This multifractality can also be
defined and measured in terms of the fluctuations of the
local dissipation rate rather than in terms of the fluctuations
of the velocity increments �v. The key element that is
needed to define multifractality in terms of dissipation
is the local space average of energy dissipation over a ball of
radius l centered around a point at r� :	l�r��

 3


8�l3 ��r�� −r���ld
3r�� �i,j�� jvi�r�� �+�iv j�r�� ��2. If the dissipation is

multifractal, moments of 	l follow a power law behavior at
small l, i.e., �	l

q	 l�q. Kolmogorov’s refined similarity hy-
pothesis relates the statistical properties of fluctuation of ve-
locity increment to those of the space averaged dissipation
and yields: �q= q

3 +�q/3. We now carry out the usual specula-
tion that since the higher order velocity structure factors dif-
fer most strongly from K41, then the probability distribution
for the velocity increments must differ most strongly from
that appropriate to K41 in the tail of the distribution. The tail
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of a distribution involves rare events and this is how the
theory of large deviations enters the picture. Following Lan-
dau’s observation on K41 �30�, Kolmogorov �1� and
Obukhov �2� introduced fluctuations in the dissipation rate.
Careful experiments revealed the existence of these fluctua-
tions. The fluctuations, however, occur rarely and these are
the rare events of turbulence. This allows us to establish a
quantitative bridge between turbulence and theory of large
deviations. The above discussion parallels what can be found
in �11� �in particular Sec. 8.6.4�. The quantitative develop-
ment in �11� thereafter focuses on a particular model which
has been taken to be a random cascade model. What is
clearly shown over there is the fact that the general random
cascade model, which exhibit multifractal behavior, is related
to the large deviation theory in which the function I�x� in Eq.
�2� is just the f�� function of a multifractal distribution.
What we will do in the following will be to exploit the above
discussion by �a� treating the dissipation at different points
inside a coarse graining volume as independent random vari-
ables and �b� using a suitable mapping which makes the
result from Cramers’ theorem for the coin toss, relevant.

More than a decade ago, Stolovitzky and Sreenivasan
�12�, in a somewhat different approach, tried to validate re-
fined similarity hypothesis by viewing turbulence as a gen-
eral stochastic process �fractional Brownian motion to be
precise�. While this was a very significant achievement, there
was a shortcoming in that the theory ruled out the existence
of correlation functions like S3. It indeed is surprising since
the readers may know that the only exact nontrivial result
existing in the theory of turbulence is Kolmogorov law:
S3�l�=− 4

5	l. However, as we shall note, their approach al-
lows us to make direct contact with the terms of large devia-
tion that signify the occurrence of rare events. It can be ob-
served that deviation of 	l from the expected mean 	 plays
the role of MN of Eq. �1� and it is what we are interested in.

As l→�, this deviation variable has a distribution according
to the role of Eq. �2�. We hope a simplification: the 	l−	 can
range from large negative to large positive values. We bring
the range between 0 and 1 by defining a variable as

ZT�	l� 

1

2
�1 + tanh�	l − 	

�
�� , �4�

where � is a constant with dimension of 	. We now make
the drastic assumption that since 	l−	 is a rare event, the
distribution of ZT can be considered similar to that for the
coin toss with a biased coin and accordingly, we can hypoth-
esize that

P�ZT� � e−NI�ZT�. �5�

Here, N is number of random variables. This simple model
yields value of ��0.16, which is quite close to the presently
accepted value. It can be taken as an a posteriori justification
for our seemingly bold above-proposed postulate regarding
the distribution of ZT�	l�. Also, a �q vs q plot has been ob-
tained that is not only convex but also follows She-Leveque
scaling �13� faithfully enough for a model as simple as this
�please refer to Fig. 1�. In what follows, we describe how
these results are arrived at.

The one-dimensional velocity derivative can be use to ex-
press the global average of the full energy dissipation if local
isotropy exists �31,32�. The velocity increment is given by

�v�l� = �
r

r+l dv
dr

dr , �6�

and ergo, the energy dissipation rate is
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FIG. 1. �q vs q curve in fully developed fluid turbulence. The dashed line joining the asterisks is the celebrated She-Leveque scaling law.
The circles joined by the solid line denote the values of �p �for corresponding q� as obtained by dint of the model proposed herein. To
appreciate the convexity of the aforementioned curves, a dotted line joining triangles, in accordance with the classical linear Kolmogorov
prediction, has also been plotted. For every q, first ��	l−	�q vs N is plotted in log-log scale using the data yielded during the numerical
integration of Eq. �9� and then the observation that for N=30 to 60, we get a fairly straight line leads us to attempt fitting the range linearly.
The process gives a value for �q. The relation �q=q /3+�q, then, tells us what the corresponding value is for �q. One can see the fit is
remarkable. There is room for improvement in extending the inertial range and in getting better fit for higher �q’s. As mentioned in this paper,
the form of ZT is crucial.
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	�l� =
15


l
�

r

r+l �dv
dr
�2

dr . �7�

If we define Di
� dv
dr �i�

��15	

��	�1/3 � and N
 l
K� �where, � is Kol-

mogorov scale, ��	�1/3 is Kolmogorov velocity scale and K
is the number of Kolmogorov scales over which one obtains
smoothness�, then Eq. �7� may be rewritten, upon discretiza-
tion, as

	l − 	 =
1

N
�
i=1

N

Yi. �8�

Here, Yi
Di
2−	. The link between the phenomenology of

turbulence and the theory of large deviation comes from the
above equation where we assume each Yi to be an indepen-
dently distributed random variable. It is the possibility that
the experimental average as expressed in Eq. �8� can show
significant departure from zero for large N�N� l� leads to the
l dependence of the powers of the deviation �l−� and thus to
the multifractality of turbulence. As we would like to empha-
size that this is a very direct way of quantifying the link
between turbulence phenomenology and the theory of large
deviations with the help of the binomial distribution. The fact
that the results are not as good as She and Leveque �13� is
merely a statement of the fact that the assumed binomial
distribution is not the most accurate one. Here, we have as-
sumed the relation �8� to be the parallel of Eq. �1�. Owing to
the contraction principle, the rate functions for 	l−	 and
Z�	l� are same. Thus, using Eqs. �3�–�5�, we can write

��	l − 	�q = ��

2
�q

��0
1�ln� x

1−x��q�� p
x �x� 1−p

1−x �1−x�Ndx

�
0

1

�� p
x �x� 1−p

1−x �1−x�Ndx � . �9�

We assume that to the leading order ��	l−	�q	 l�q. By trial
and error, we fix the inertial range as N=30 to 60 and calcu-
late numerically ��=−�2�=0.16. Similarly, we calculate
�q�=q /3+�q/3� for various q. Note that to obtain the numeri-
cal solution for the integrals in Eq. �9�, we have dropped the
diverging terms from the finite series that represent the inte-
grands as they are suitably discretized for their evaluation by
Simpson’s one-third rule.

Our model’s inherent bias for the value 0.26 for the pa-
rameter p in order to closely mimic the realistic turbulent
fluid’s scaling properties would seem so natural when it is
compared with a particular successful multifractal cascade
model �33� based on a generalized two-scale Cantor set. In
that model, as the eddies breakdown into two new ones, the
flux of kinetic energy into the smaller scales is hypothesized
to be dividing into nonequal fractions p=0.3 �quite close to
our value of p=0.26 � and 1− p=0.7. It could fit remarkably
well the entire spectrum of generalized dimensions �34� and
�equivalently� the singularity spectrum �the so-called f −
curve �35�� for the energy dissipation field in many a turbu-
lent flow.

In closing, we would like to point out the simplicity of
biased coin-toss models and its reasonably astonishing suc-
cess in predicting � reduces the need for more complicated
models. We believe just by being able to find a more appro-
priate function ZT, we can make big leaps in the rather com-
plex theory of turbulence. One should note that the refined
large deviation theorem, which implies the presence of the
factor �N in the probability density, has no extra effect on the
results derived herein using large deviation theorem. As
readers must have appreciated, we could derive results con-
cerning anomalous exponents �showcasing intermittency in
turbulence� merely by focusing on the presence of rare
events in the distribution of energy dissipation rate and by
mapping them appropriately on the phenomenon of large de-
viations found in simple coin toss. Therefore, it is in accor-
dance with our contention that the simple coin toss is the
“Gaussian model” for the problems where rare events play
significant role, Within this very framework, we hope to
model various other physical phenomena that are dominated
by rare events; after all, now we have a working approach to
arrive at quantitative results for such processes that cannot be
usually solved otherwise.
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